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ABSTRACT

Control theory, computational intelligence
and stochastic optimization methods are put
together to build a new search algorithm
for use in optimization problems involving
computationally expensive evaluation tools,
such as the design of optimal aerodynamic
shapes. The search for optimal solutions is
carried out through Evolutionary Algorithms
(EAs). Instead of using the exact and costly
evaluation tool, FEAs rely on a low—cost,
regularly (re)trained new surrogate evaluation
model. Compared to some previous works
by the same group, where on line trained
surrogate models were used, the new method
has two noticeable differences. The first one
is that the surrogate model is built off-line,
i.e. separately from the optimization method;
thus, a repetitive scheme is established which
converges to the optimal solution within a
small number of external cycles. The second
and most important difference is that the
surrogate model is trained on both objective
function values and its derivatives with respect
to the design variables. For this purpose, a
new Radial Basis Function (RBF) neural
network is proposed, with extra terms and
adjustable coefficients.  Single— and multi—
objective mathematical problems as well as
the inverse design of a peripheral compressor
cascade will be presented. For the latter,
the objective function gradient is computed
through solving the adjoint flow equations.

EVOLUTIONARY ALGORITHMS
WITH SURROGATE MODELS

The computational cost of shape optimization
methods in aeronautics or turbomachinery
is proportional to the number of candidate
solutions that should be evaluated by CFD
software, before reaching the optimal solu-
tion. In population based EAs, this number
is usually high enough. To alleviate this
problem, surrogate evaluation models can be
used instead; in the past, several relevant
algorithmic variants have been proposed by
our research group, see [1-9] .

In those works, various surrogate evalua-
tion models (multilayer perceptron, RBF net-
works, kriging model) have been incorporated
into EAs, either in the global (in the earlier
works) or in the local sense (in the most recent
works).

A surrogate evaluation model will be re-
ferred to as “global” if this covers the entire
search space. During the evolution, the global
model needs to be updated regularly, using
data from preceding evaluations. Its training
is carried out off line, whenever “enough” new
data have been recorded. On the other hand,
a “local” surrogate evaluation model needs to
be trained for each and every individual anew,
using the available neighboring data. This will
be referred to as “on line” training.

In general, global and local surrogate mod-
els can be used in the same manner: within



Inverse Problems, Design and Optimization Symposium, Rio de Janeiro, Brazil, 2004

each generation of the FA, the surrogate mod-
els pre—evaluate the entire population (inexact
pre evaluation phase, IPE see [6], [9]). Then,
only the top individuals needs to be evaluated
using the costly CFD tool, before proceeding
to the selection process in order to define the
parent population for the next generation. We
thus prevent a great number of non promising
population members from being exactly evalu-
ated.

Even with the IPE technique, where the
computational cost is reduced by almost one
order of magnitude, gradient—based optimiza-
tion algorithms usually make this faster than
EAs! Among other, control theory is often em-
ployed to derive the adjoint to the flow equa-
tions whose solution yields the objective func-
tion gradient values, [10]. This can be used
along with any gradient descent like algorithm
to get the optimal solution. However, by do-
ing so, local instead of global optimal solutions
could be found.

Despite the successful use of local surrogate
models in evolutionary optimization, as shown
in [7], [9], etc., we herein propose and assess
a different optimization algorithm. All of the
previously mentioned tools are used, though
in a different way: FAs undertake the search
for the optimal solution; an enhanced surro-
gate model is regularly rebuilt (off line train-
ing) and used; the adjoint equations are used
to support the surrogate model rather than
the optimization method itself. The proposed
method is described below, in detail.

THE PROPOSED OPTIMIZATION
METHOD

As stated before, the new method is based on
EAs, surrogate models and adjoint techniques
but with a number of noticeable differences
compared to our previous works. These are:

e The surrogate model is a new RBF net-
work, first proposed in this paper. Since
the network will be trained on both re-
sponses and their gradients with respect
to the network input parameters, it should
incorporate additional tuning parameters.
The use of gradient information during
training increases the predictive capabil-
ities of the network or, alternatively, the

same accuracy can be achieved using much
smaller training datasets. The additional
cost for training the network is almost neg-
ligible for small-sized networks. The new
RBF network will be described in the next
section.

e The FA is used to compute the “optimal”
solution, using evaluations based on the
surrogate model (this explains the use of
quotes). According to the previous dis-
cussion, the surrogate model should be re-
ferred to as global. Upon convergence of
the FA, the current “optimal” solution is
exactly evaluated. The process is termi-
nated or a new cycle starts, depending
on the deviation between its exact fitness
value and that computed via the surrogate
model.

e Computation of objective function deriva-
tives is made possible through the cou-
pling of the flow equations solver with the
numerical solution of the adjoint system
of equations. The latter is discussed in
a separate section. The CPU cost of the
adjoint equations solver does not exceed
the cost of the numerical solution of the
flow equations and does not depend on
the number of design variables. So, prac-
tically, the CPU cost for the analysis of
a candidate solution (solution of the flow
and adjoint equations) is about twice the
cost of computing only its response (solu-
tion of the flow equations).

e In multi-objective problems, as many
RBF networks as the number of objectives
should be trained. The multi-objective al-
gorithm differs from the single objective
one in the manner new training datasets
are defined.

The single objective optimization algo-
rithm is described below:

Step 1: The starting training dataset for the
surrogate model is created. The train-
ing patterns can be defined using any De-
sign of Experiment (DoE) technique, to
attain maximum information for the re-
sponse surface through the minimum num-
ber of patterns. Regular grids, random
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sampling, (full or fractional) factorial de-
signs, orthogonal arrays etc. can be used.
In this paper, the training patterns are ei-
ther chosen at random or defined as the
nodal points of a grid fitted to the search
space.

Step 2: For the previously selected individu-
als, the flow solver and the adjoint equa-
tions are solved. The so computed re-
sponses and derivatives are stored in the
training database.

Step 3: The surrogate model (RBF network)
is trained.

Step 4: The EA software is used to get the
“optimal” solution, using only the surro-
gate evaluation model.

Step 5: The “optimal” solution 1is re
evaluated separately, using the exact
evaluation tool. If the deviation between
the approximate and exact fitness is
less than a user defined threshold, the
algorithm terminates here.

Step 6: The training set is redefined by
adding new entries or eliminating some of
the existing ones. The most recent “op-
timal” solution which has been evaluated
exactly in step 5 is added to the training
set; at the same time, the closest to the
“optimal” solution training pattern should
be eliminated if their distance (nondimen-
sional, measured in the parametric space)
is less than a user defined value. Over
and above, k new training patterns (k is a
user—defined small integer) are evaluated
and then added to the dataset. These are
selected by running x minor optimization
problems, seeking for points with maxi-
mum average distance from the existing
training patterns. This search is also car-
ried out by FAs and its computing cost
is negligible. Finally, windowing, i.e. the
reduction of the search space is possible
(though optional) and, by doing so, some
other entries are eliminated from the new
training set. Return to step 2.

With some modifications, the same algorithm
applies to multi objective problems as well. In
this case, instead of adapting the search space

(Step 6) around a single “optimal” solution, a
more complicated algorithm is used to carry
out, the adaptation around the Pareto front
members. A thinning process is used to reduce
the number of entries in the Pareto front and
control the number of additional entries into
the training dataset.

THE NEW RBF NETWORK

For the new RBF network description, we
will assume M inputs (corresponding to the
M design variables) and a single output. A
typical RBF network is shown in fig. 1; it
involves N hidden units and, for its training,
N patterns are used. The response is given by

N
y = Z¢1 exp(—o;) (1)

Figure 1: An RBF network with a single out-
put unit.

Unlike conventional RBF networks, the
weights ¢; are not the unknown parameters to
be computed during the training. Instead, they
are expressed as linear combination of the real
unknown quantities b; and a; ,, namely

M
v = by + Z aim|l + (Tm —cim)]  (2)

where z,, and ¢; , denote the m-th component
of a training pattern and the i-th RBF' center,
respectively. The RBF centers coincide with
the training patterns. The o; quantitites are
given by
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As previously stated, the b; and a;,, coef-
ficients are computed during the training
process. A linear system is formulated by
setting responses and derivatives computed
by the network equal to the corresponding
archived values for each training pattern, sep-
arately. The resulting system is solved using a
direct inversion method. The iterative Back
Error Propagation (BEP) method can be
used instead; BEP is cheaper to run with huge
training datasets and/or high—dimensional
multivariate problems.

THE ADJOINT FORMULATION
OF THE FLOW EQUATIONS

The CFD evaluation sofware used to evaluate
candidate solutions is a primitive variable,
implicit solver of the compressible, inviscid
fluid flow equations, written as a hyperbolic
system of equations

R() = @+@+@+@:ﬁ (4)
ot Or oy 0z

where T is the array of the conservative flow
variables. The convection terms are discretized
using second order upwind schemes. The tar-
get is to reproduce a given pressure distribu-
tion p; over the blade surface. The objective
function is defined as

=5[] womras 6

and, through adding the Euler equations mul-
tiplied by the costate variables ¥, we come up
with the augmented objective function, [10]

[= %//% (pfpt)zdsuﬁ-'[/:v@TﬁdV (6)

or, symbolically,

1=1(TU,¥,3X) (7)

where V' is the flow domain and X stands for
the design variables’ array. The continuous ad-
joint formulation is set up to compute deriva-
tives

dr a1 aﬁ+ o1 )
dX 09U 0X  oX

and leads to the linear adjoint equation

%
@_AT@_BT@_CT@ =T (9)
ot ox Jy 0z

which is solved through the same numeri-
cal kernel with the Euler equations. Here

A= %, etc.
a

RESULTS AND DISCUSSION

To demonstrate the general capabilities of
the method, single- and multi—objective
mathematical optimization problems are first
solved. In particular, problems with only
two free parameters contribute a lot to the
understanding on the method, through simple
response surface plots. Of course, in these
problems, the objective function gradient is
computed analytically.  As already stated
above, the engineering problem with which
this paper is dealing with is the inverse design
of a 3D compressor peripheral cascade.

The Single—Objective Rastrigin Function

The first mathematical problem is the min-
imization of the Rastrigin function. Regard-
less of the number of free parameters (M), the
Rastrigin function has many local stationary
points and is a typical test problem for assess-
ing the capabilities of optimization methods.
It is defined by

Fr (%)= [} — 10cos(2x z;) + 10] (10)

=1

First of all, the solution of the problem with
M = 2 is demonstrated. Both independent
variables z;, i = 1,2 were bounded in [—1, 1.5].
The search space was purposely defined to be
asymmetric with respect to the global mini-
mum (0,0). At the first cycle, the surrogate
model was trained using N = 30 randomly cho-
sen patterns. None of them was allowed to lie
within a small circle (radius=0.30) centered at
(0,0), i.e. too close to the final solution, fig.2.
Two cycles were sufficient for the optimiza-
tion process to converge to the global optimum.
This was due to the excellent representation of
the exact response surface that the new RBF
network achieved from the first cycle, even with
only 30 training patterns. It is evident that
the second cycle contributes practically to the
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refinement of the current solution. In order to
demonstrate the prediction accuracy of the sur-
rogate model (built in the first cycle), a dense
grid was generated and the model responses
over its nodal points were computed. The cor-
responding iso—areas are shown in fig.3. This
figure also includes the exact responses as well
as responses computed using a conventional
RBF network (trained on responses, without
accounting for gradients). The superiority of
the new model is obvious. Moreover, it is in-
teresting to note that some subareas in fig.2
(among them, the area close to the optimal so-
lution) are point free (no points within these
areas were included in the database). This is
where the conventional RBF network system-
atically fails; in contrast, the new surrogate
model, driven also by gradient data, yields ex-
cellent predictions.
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Figure 2: Rastrigin Function, M = 2: Distri-
bution of the N = 30 randomly chosen training
patterns and the point free circle around the
optimal solution.

The same optimization problem was also
solved with M = 10 degrees of freedom, with
the aforementioned bounds for all variables and
the same training pattern selection technique.
At the first cycle, the surrogate model was
trained using N = 100 patterns selected at
random and, after six optimization cycles, the
global minimum was found. The convergence
history is shown in fig.4. It is clear that, in the
first three cycles, the EA which was supported
by the surrogate model yielded “optimal” so-
lutions far from the real one (the “optimal”
solutions were temporarily approaching local
stationary points). After the first three cycles,
the FA was capable to yield an “optimal” so-
lution close to the real one which was further
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Figure 3: Rastrigin Function, M = 2: Re-
sponse surfaces (a) predicted by the new RBF
network (top—left), (b) predicted by a conven-
tional RBF network, i.e. without taking into
account gradient information (top right) and
(c) the exact one (analytically computed, bot-
tom).

refined during the last two cycles.

Apart from the initial 100 patterns, 25 more
were exactly evaluated during the subsequent
cycles. Thus, 125 objective function and gra-
dient evaluations were necessary which, for
an equivalent flow problem (where the adjoint
equations should be solved to compute the gra-
dient) means that the total computing cost
would be equal to 250 equivalent flow solutions.

Two—Objective Minimization Problem
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Figure 4: Rastrigin Function, M = 10: Con-
vergence history of the optimization algorithm.




Inverse Problems, Design and Optimization Symposium, Rio de Janeiro, Brazil, 2004

The second problem involves two mathe-
matical functions with M = 2 degrees of free-
dom each. Both should be minimized, leading
thus to the Pareto front of optimal solutions.
The two functions are

Fk,(m)—(zi]\f_l [(xz — ak)27102005(27r(1;i7ak))+10]
(11)
where £k = 1,2, ag = 0, ap = 1.5

71 € [-212,1.12]and 2, € [-1.12,2.12].

The starting training set was formed by
N = 100 randomly selected patterns, the same
for each objective function. By the end of
each cycle, the Pareto optimal solutions were
exactly evaluated and added to the training
dataset. In order to avoid extra (unnecessary)
computing charge that might occur whenever
the Pareto front is overcrowded, a thinning
technique was employed. The role of front thin-
ning is to identify a subset of the Pareto mem-
bers (its size is user—defined), based on distance
considerations. In the literature, several thin-
ning techniques for the Pareto front are pro-
posed, but more comments on them is beyond
the scope of this paper.

At the end of the optimization process the
training dataset consisted of 133 patterns. The
Pareto front finally computed using the surro-
gate model is compared to the exact front, as
shown in fig.5. The response surfaces predicted
by the proposed surrogate model, the conven-
tional RBF network and the exact response
surface, over the nodal points of a dense grid,
are shown in fig. 6. The new RBF networks is
much better than the conventional one, espe-
cially as far as the first function is of concern.

Inverse Design of a 3D Peripheral Cas-
cade

The last problem is concerned with the in-
verse design of a peripheral compressor cas-
cade, based on given pressure distributions
along its surfaces. The analysis tool was a
finite—volume solution method for the 3D com-
pressible, inviscid flow equations. A similar
technique was used to numerically solve the
adjoint equations, yielding thus the sensitivity
derivatives required for the network training.
The isentropic Mach number at outlet hub was
equal to My ;s = 0.4 and the peripheral and ra-
dial inlet flow angles were aper = 58, Gradiar =
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Figure 5: Two Objective Function: The exact
Pareto front (dashed line) and that computed
using the surrogate model (marks).

Figure 6: Two Objective Function: Response
surfaces for the first (left column) and second
(right column) objective functions. The exact
shapes (top), the ones computed using the new
RBF network (mid) and thoses produced us-
ing a conventional RBF network (bottom) are
shown.
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Figure 7: 3D Peripheral Cascade: Parameter-
ization of the pressure and suction blade sur-
faces using Bezier surfaces. A total number of
5 x 4 = 20 control points were defined on each
surface.

0°.

The blade pressure and suction sides were
parameterized using two Bezier surfaces, which
met along the leading and training edges. Each
side of the blade (pressure and suction), was
parameterized using 20 control points, 4 of
them to the radial direction, times 5 to the
axial one. fig. 7. Among them, 14 were fixed
and only 6 points per blade side were allowed
to vary. So, the total number of degrees of
freedom was 12.

The Mach number distribution over the
blade surfaces is shown in fig.8. This was
the preset target (though the target was ex-
pressed in terms of pressure coefficient rather
than Mach number) but it is also too close to
the corresponding distribution over the com-
puted optimal blade.

The starting surrogate model is built upon
the responses and gradients for 100 random
training patterns. The optimization process
converged within six cycles to a blade geom-
etry that reproduces the target pressure distri-
bution. The convergence history is shown in
fig. 9. The CPU cost for this test case was
100 + 6 direct evaluations of the flow field and
the same number of adjoint evaluations, corre-
sponding to 212 Fuler calls.

CONCLUSIONS
A new variant of FA based optimization,
using a new RBF network, was proposed.

Figure 8: 3D Peripheral Cascade: Mach num-
ber distribution over the blade surfaces and the
hub.

Reduced Cost

0 1 2 3 4 5 6
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Figure 9: 3D Peripheral Cascade: Convergence
history.
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The method seems promising for use in
optimization problems with expensive fitness
evaluations. The concept of the new method
is to allow a direct and an adjoint flow solver
to compute objective function values and
gradients at a number of candidate solutions
which will then be used to build a dependable
surrogate evaluation model for the evolution-
ary search. Compared to conventional RBF
networks, the new network has a number of
additional tuning parameters. The new model
yields systematically better predictions than
those of the conventional model. Tt, thus,
ensures that the optimization algorithm may
converge to the global optimal solution within
a limited number of cycles, each of which
involves the RBF network retraining.

For the design of optimal aerodynamic
shapes, the adjoint formulation is used to com-
pute objective function derivatives. To ex-
tend this method in application areas other
than those supported by CFD tools, a simi-
lar method that is capable of computing gra-
dients, with reasonable computing cost, should
be devised.

The training set is updated at the end of
each cycle, prior to building the new RBF
model. Each time, the training patterns are
redefined through (a) adding new patterns
(the most recent “optimal” solution should be
among them; but, other points selected in less
explored areas should be added) so as to pro-
tect the network from overfitting and the whole
algorithm from being trapped into local sta-
tionary points, (b) eliminating some patterns,
by employing distance based criteria. The re-
definition of the training set is crucial and re-
search in this area is ongoing.
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