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ABSTRACTControl theory, 
omputational intelligen
eand sto
hasti
 optimization methods are puttogether to build a new sear
h algorithmfor use in optimization problems involving
omputationally expensive evaluation tools,su
h as the design of optimal aerodynami
shapes. The sear
h for optimal solutions is
arried out through Evolutionary Algorithms(EAs). Instead of using the exa
t and 
ostlyevaluation tool, EAs rely on a low{
ost,regularly (re)trained new surrogate evaluationmodel. Compared to some previous worksby the same group, where on{line trainedsurrogate models were used, the new methodhas two noti
eable di�eren
es. The �rst oneis that the surrogate model is built o�{line,i.e. separately from the optimization method;thus, a repetitive s
heme is established whi
h
onverges to the optimal solution within asmall number of external 
y
les. The se
ondand most important di�eren
e is that thesurrogate model is trained on both obje
tivefun
tion values and its derivatives with respe
tto the design variables. For this purpose, anew Radial Basis Fun
tion (RBF ) neuralnetwork is proposed, with extra terms andadjustable 
oeÆ
ients. Single{ and multi{obje
tive mathemati
al problems as well asthe inverse design of a peripheral 
ompressor
as
ade will be presented. For the latter,the obje
tive fun
tion gradient is 
omputedthrough solving the adjoint 
ow equations.

EVOLUTIONARY ALGORITHMSWITH SURROGATE MODELSThe 
omputational 
ost of shape optimizationmethods in aeronauti
s or turboma
hineryis proportional to the number of 
andidatesolutions that should be evaluated by CFDsoftware, before rea
hing the optimal solu-tion. In population{based EAs, this numberis usually high enough. To alleviate thisproblem, surrogate evaluation models 
an beused instead; in the past, several relevantalgorithmi
 variants have been proposed byour resear
h group, see [1�9℄ .In those works, various surrogate evalua-tion models (multilayer per
eptron, RBF net-works, kriging model) have been in
orporatedinto EAs, either in the global (in the earlierworks) or in the lo
al sense (in the most re
entworks).A surrogate evaluation model will be re-ferred to as \global" if this 
overs the entiresear
h spa
e. During the evolution, the globalmodel needs to be updated regularly, usingdata from pre
eding evaluations. Its trainingis 
arried out o�{line, whenever \enough" newdata have been re
orded. On the other hand,a \lo
al" surrogate evaluation model needs tobe trained for ea
h and every individual anew,using the available neighboring data. This willbe referred to as \on{line" training.In general, global and lo
al surrogate mod-els 
an be used in the same manner: within
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h generation of the EA, the surrogate mod-els pre{evaluate the entire population (inexa
tpre{evaluation phase, IPE see [6℄, [9℄). Then,only the top individuals needs to be evaluatedusing the 
ostly CFD tool, before pro
eedingto the sele
tion pro
ess in order to de�ne theparent population for the next generation. Wethus prevent a great number of non{promisingpopulation members from being exa
tly evalu-ated.Even with the IPE te
hnique, where the
omputational 
ost is redu
ed by almost oneorder of magnitude, gradient{based optimiza-tion algorithms usually make this faster thanEAs ! Among other, 
ontrol theory is often em-ployed to derive the adjoint to the 
ow equa-tions whose solution yields the obje
tive fun
-tion gradient values, [10℄. This 
an be usedalong with any gradient des
ent{like algorithmto get the optimal solution. However, by do-ing so, lo
al instead of global optimal solutions
ould be found.Despite the su

essful use of lo
al surrogatemodels in evolutionary optimization, as shownin [7℄, [9℄, et
., we herein propose and assessa di�erent optimization algorithm. All of thepreviously mentioned tools are used, thoughin a di�erent way: EAs undertake the sear
hfor the optimal solution; an enhan
ed surro-gate model is regularly rebuilt (o�{line train-ing) and used; the adjoint equations are usedto support the surrogate model rather thanthe optimization method itself. The proposedmethod is des
ribed below, in detail.THE PROPOSED OPTIMIZATIONMETHODAs stated before, the new method is based onEAs, surrogate models and adjoint te
hniquesbut with a number of noti
eable di�eren
es
ompared to our previous works. These are:� The surrogate model is a new RBF net-work, �rst proposed in this paper. Sin
ethe network will be trained on both re-sponses and their gradients with respe
tto the network input parameters, it shouldin
orporate additional tuning parameters.The use of gradient information duringtraining in
reases the predi
tive 
apabil-ities of the network or, alternatively, the

same a

ura
y 
an be a
hieved using mu
hsmaller training datasets. The additional
ost for training the network is almost neg-ligible for small-sized networks. The newRBF network will be des
ribed in the nextse
tion.� The EA is used to 
ompute the \optimal"solution, using evaluations based on thesurrogate model (this explains the use ofquotes). A

ording to the previous dis-
ussion, the surrogate model should be re-ferred to as global. Upon 
onvergen
e ofthe EA, the 
urrent \optimal" solution isexa
tly evaluated. The pro
ess is termi-nated or a new 
y
le starts, dependingon the deviation between its exa
t �tnessvalue and that 
omputed via the surrogatemodel.� Computation of obje
tive fun
tion deriva-tives is made possible through the 
ou-pling of the 
ow equations solver with thenumeri
al solution of the adjoint systemof equations. The latter is dis
ussed ina separate se
tion. The CPU 
ost of theadjoint equations solver does not ex
eedthe 
ost of the numeri
al solution of the
ow equations and does not depend onthe number of design variables. So, pra
-ti
ally, the CPU 
ost for the analysis ofa 
andidate solution (solution of the 
owand adjoint equations) is about twi
e the
ost of 
omputing only its response (solu-tion of the 
ow equations).� In multi{obje
tive problems, as manyRBF networks as the number of obje
tivesshould be trained. The multi{obje
tive al-gorithm di�ers from the single{obje
tiveone in the manner new training datasetsare de�ned.The single{obje
tive optimization algo-rithm is des
ribed below:Step 1: The starting training dataset for thesurrogate model is 
reated. The train-ing patterns 
an be de�ned using any De-sign of Experiment (DoE ) te
hnique, toattain maximum information for the re-sponse surfa
e through the minimum num-ber of patterns. Regular grids, random



Inverse Problems, Design and Optimization Symposium, Rio de Janeiro, Brazil, 2004sampling, (full or fra
tional) fa
torial de-signs, orthogonal arrays et
. 
an be used.In this paper, the training patterns are ei-ther 
hosen at random or de�ned as thenodal points of a grid �tted to the sear
hspa
e.Step 2: For the previously sele
ted individu-als, the 
ow solver and the adjoint equa-tions are solved. The so{
omputed re-sponses and derivatives are stored in thetraining database.Step 3: The surrogate model (RBF network)is trained.Step 4: The EA software is used to get the\optimal" solution, using only the surro-gate evaluation model.Step 5: The \optimal" solution is re{evaluated separately, using the exa
tevaluation tool. If the deviation betweenthe approximate and exa
t �tness isless than a user de�ned threshold, thealgorithm terminates here.Step 6: The training set is rede�ned byadding new entries or eliminating some ofthe existing ones. The most re
ent \op-timal" solution whi
h has been evaluatedexa
tly in step 5 is added to the trainingset; at the same time, the 
losest to the\optimal" solution training pattern shouldbe eliminated if their distan
e (nondimen-sional, measured in the parametri
 spa
e)is less than a user{de�ned value. Overand above, � new training patterns (� is auser{de�ned small integer) are evaluatedand then added to the dataset. These aresele
ted by running � minor optimizationproblems, seeking for points with maxi-mum average distan
e from the existingtraining patterns. This sear
h is also 
ar-ried out by EAs and its 
omputing 
ostis negligible. Finally, windowing, i.e. theredu
tion of the sear
h spa
e is possible(though optional) and, by doing so, someother entries are eliminated from the newtraining set. Return to step 2.With some modi�
ations, the same algorithmapplies to multi{obje
tive problems as well. Inthis 
ase, instead of adapting the sear
h spa
e

(Step 6) around a single \optimal" solution, amore 
ompli
ated algorithm is used to 
arryout the adaptation around the Pareto frontmembers. A thinning pro
ess is used to redu
ethe number of entries in the Pareto front and
ontrol the number of additional entries intothe training dataset.THE NEW RBF NETWORKFor the new RBF network des
ription, wewill assume M inputs (
orresponding to theM design variables) and a single output. Atypi
al RBF network is shown in �g. 1; itinvolves N hidden units and, for its training,N patterns are used. The response is given byy = NXi=1  i exp(��i) (1)
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1 2 Mm43Figure 1: An RBF network with a single out-put unit.Unlike 
onventional RBF networks, theweights  i are not the unknown parameters tobe 
omputed during the training. Instead, theyare expressed as linear 
ombination of the realunknown quantities bi and ai;m, namely i = bi + MXm=1 ai;m[1 + (xm � 
i;m)℄ (2)where xm and 
i;m denote the m-th 
omponentof a training pattern and the i-th RBF 
enter,respe
tively. The RBF 
enters 
oin
ide withthe training patterns. The �i quantitites aregiven by�i =M MXm=1 Ii;m(xm � 
i;m)2 (3)
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oef-�
ients are 
omputed during the trainingpro
ess. A linear system is formulated bysetting responses and derivatives 
omputedby the network equal to the 
orrespondingar
hived values for ea
h training pattern, sep-arately. The resulting system is solved using adire
t inversion method. The iterative Ba
k{Error{Propagation (BEP) method 
an beused instead; BEP is 
heaper to run with hugetraining datasets and/or high{dimensionalmultivariate problems.THE ADJOINT FORMULATIONOF THE FLOW EQUATIONSThe CFD evaluation sofware used to evaluate
andidate solutions is a primitive variable,impli
it solver of the 
ompressible, invis
id
uid 
ow equations, written as a hyperboli
system of equations�!R (�!U ) = ��!U�t + ��!F�x + ��!G�y + ��!E�z = �!0 (4)where �!U is the array of the 
onservative 
owvariables. The 
onve
tion terms are dis
retizedusing se
ond{order upwind s
hemes. The tar-get is to reprodu
e a given pressure distribu-tion pt over the blade surfa
e. The obje
tivefun
tion is de�ned asI = 12 ZZSw(p� pt)2dS (5)and, through adding the Euler equations mul-tiplied by the 
ostate variables �!	, we 
ome upwith the augmented obje
tive fun
tion, [10℄I = 12 ZZSw(p�pt)2dSw+ZZZV �!	T�!RdV (6)or, symboli
ally,I = I(�!U ;�!	 ;�!X ) (7)where V is the 
ow domain and �!X stands forthe design variables' array. The 
ontinuous ad-joint formulation is set up to 
ompute deriva-tives dId�!X = �I��!U ��!U��!X + �I��!X (8)and leads to the linear adjoint equation

��!	�t �AT ��!	�x �BT ��!	�y � CT ��!	�z = �!0 (9)whi
h is solved through the same numeri-
al kernel with the Euler equations. HereA = ��!F��!U , et
.RESULTS AND DISCUSSIONTo demonstrate the general 
apabilities ofthe method, single{ and multi{obje
tivemathemati
al optimization problems are �rstsolved. In parti
ular, problems with onlytwo free parameters 
ontribute a lot to theunderstanding on the method, through simpleresponse surfa
e plots. Of 
ourse, in theseproblems, the obje
tive fun
tion gradient is
omputed analyti
ally. As already statedabove, the engineering problem with whi
hthis paper is dealing with is the inverse designof a 3D 
ompressor peripheral 
as
ade.The Single{Obje
tive Rastrigin Fun
tionThe �rst mathemati
al problem is the min-imization of the Rastrigin fun
tion. Regard-less of the number of free parameters (M), theRastrigin fun
tion has many lo
al stationarypoints and is a typi
al test problem for assess-ing the 
apabilities of optimization methods.It is de�ned byFR (�!x ) = MXi=1 �x2i � 10
os(2� xi) + 10� (10)First of all, the solution of the problem withM = 2 is demonstrated. Both independentvariables xi; i = 1; 2 were bounded in [�1; 1:5℄.The sear
h spa
e was purposely de�ned to beasymmetri
 with respe
t to the global mini-mum (0; 0). At the �rst 
y
le, the surrogatemodel was trained usingN = 30 randomly 
ho-sen patterns. None of them was allowed to liewithin a small 
ir
le (radius=0:30) 
entered at(0; 0), i.e. too 
lose to the �nal solution, �g.2.Two 
y
les were suÆ
ient for the optimiza-tion pro
ess to 
onverge to the global optimum.This was due to the ex
ellent representation ofthe exa
t response surfa
e that the new RBFnetwork a
hieved from the �rst 
y
le, even withonly 30 training patterns. It is evident thatthe se
ond 
y
le 
ontributes pra
ti
ally to the
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urrent solution. In order todemonstrate the predi
tion a

ura
y of the sur-rogate model (built in the �rst 
y
le), a densegrid was generated and the model responsesover its nodal points were 
omputed. The 
or-responding iso{areas are shown in �g.3. This�gure also in
ludes the exa
t responses as wellas responses 
omputed using a 
onventionalRBF network (trained on responses, withouta

ounting for gradients). The superiority ofthe new model is obvious. Moreover, it is in-teresting to note that some subareas in �g.2(among them, the area 
lose to the optimal so-lution) are point{free (no points within theseareas were in
luded in the database). This iswhere the 
onventional RBF network system-ati
ally fails; in 
ontrast, the new surrogatemodel, driven also by gradient data, yields ex-
ellent predi
tions.
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X_1Figure 2: Rastrigin Fun
tion, M = 2: Distri-bution of the N = 30 randomly 
hosen trainingpatterns and the point{free 
ir
le around theoptimal solution.The same optimization problem was alsosolved with M = 10 degrees of freedom, withthe aforementioned bounds for all variables andthe same training pattern sele
tion te
hnique.At the �rst 
y
le, the surrogate model wastrained using N = 100 patterns sele
ted atrandom and, after six optimization 
y
les, theglobal minimum was found. The 
onvergen
ehistory is shown in �g.4. It is 
lear that, in the�rst three 
y
les, the EA whi
h was supportedby the surrogate model yielded \optimal" so-lutions far from the real one (the \optimal"solutions were temporarily approa
hing lo
alstationary points). After the �rst three 
y
les,the EA was 
apable to yield an \optimal" so-lution 
lose to the real one whi
h was further

Figure 3: Rastrigin Fun
tion, M = 2: Re-sponse surfa
es (a) predi
ted by the new RBFnetwork (top{left), (b) predi
ted by a 
onven-tional RBF network, i.e. without taking intoa

ount gradient information (top{right) and(
) the exa
t one (analyti
ally 
omputed, bot-tom).re�ned during the last two 
y
les.Apart from the initial 100 patterns, 25 morewere exa
tly evaluated during the subsequent
y
les. Thus, 125 obje
tive fun
tion and gra-dient evaluations were ne
essary whi
h, foran equivalent 
ow problem (where the adjointequations should be solved to 
ompute the gra-dient) means that the total 
omputing 
ostwould be equal to 250 equivalent 
ow solutions.Two{Obje
tive Minimization Problem
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ond problem involves two mathe-mati
al fun
tions with M = 2 degrees of free-dom ea
h. Both should be minimized, leadingthus to the Pareto front of optimal solutions.The two fun
tions areFk(x)= PNi=1�(xi � ak)2�10 
os(2�(xi�ak))+10�2 !0:25(11)where k = 1; 2, a1 = 0, a2 = 1:5,x1 2 [�2:12; 1:12℄ and x2 2 [�1:12; 2:12℄.The starting training set was formed byN = 100 randomly sele
ted patterns, the samefor ea
h obje
tive fun
tion. By the end ofea
h 
y
le, the Pareto optimal solutions wereexa
tly evaluated and added to the trainingdataset. In order to avoid extra (unne
essary)
omputing 
harge that might o

ur wheneverthe Pareto front is over
rowded, a thinningte
hnique was employed. The role of front thin-ning is to identify a subset of the Pareto mem-bers (its size is user{de�ned), based on distan
e
onsiderations. In the literature, several thin-ning te
hniques for the Pareto front are pro-posed, but more 
omments on them is beyondthe s
ope of this paper.At the end of the optimization pro
ess thetraining dataset 
onsisted of 133 patterns. ThePareto front �nally 
omputed using the surro-gate model is 
ompared to the exa
t front, asshown in �g.5. The response surfa
es predi
tedby the proposed surrogate model, the 
onven-tional RBF network and the exa
t responsesurfa
e, over the nodal points of a dense grid,are shown in �g. 6. The new RBF networks ismu
h better than the 
onventional one, espe-
ially as far as the �rst fun
tion is of 
on
ern.Inverse Design of a 3D Peripheral Cas-
adeThe last problem is 
on
erned with the in-verse design of a peripheral 
ompressor 
as-
ade, based on given pressure distributionsalong its surfa
es. The analysis tool was a�nite{volume solution method for the 3D 
om-pressible, invis
id 
ow equations. A similarte
hnique was used to numeri
ally solve theadjoint equations, yielding thus the sensitivityderivatives required for the network training.The isentropi
 Ma
h number at outlet hub wasequal toM2;is = 0:4 and the peripheral and ra-dial inlet 
ow angles were aper = 58o; aradial =
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tive Fun
tion: The exa
tPareto front (dashed line) and that 
omputedusing the surrogate model (marks).

Figure 6: Two Obje
tive Fun
tion: Responsesurfa
es for the �rst (left 
olumn) and se
ond(right 
olumn) obje
tive fun
tions. The exa
tshapes (top), the ones 
omputed using the newRBF network (mid) and thoses produ
ed us-ing a 
onventional RBF network (bottom) areshown.
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Figure 7: 3D Peripheral Cas
ade: Parameter-ization of the pressure and su
tion blade sur-fa
es using Bezier surfa
es. A total number of5� 4 = 20 
ontrol points were de�ned on ea
hsurfa
e.0o. The blade pressure and su
tion sides wereparameterized using two Bezier surfa
es, whi
hmet along the leading and training edges. Ea
hside of the blade (pressure and su
tion), wasparameterized using 20 
ontrol points, 4 ofthem to the radial dire
tion, times 5 to theaxial one. �g. 7. Among them, 14 were �xedand only 6 points per blade side were allowedto vary. So, the total number of degrees offreedom was 12.The Ma
h number distribution over theblade surfa
es is shown in �g.8. This wasthe preset target (though the target was ex-pressed in terms of pressure 
oeÆ
ient ratherthan Ma
h number) but it is also too 
lose tothe 
orresponding distribution over the 
om-puted optimal blade.The starting surrogate model is built uponthe responses and gradients for 100 randomtraining patterns. The optimization pro
ess
onverged within six 
y
les to a blade geom-etry that reprodu
es the target pressure distri-bution. The 
onvergen
e history is shown in�g. 9. The CPU 
ost for this test 
ase was100+ 6 dire
t evaluations of the 
ow �eld andthe same number of adjoint evaluations, 
orre-sponding to 212 Euler 
alls.CONCLUSIONSA new variant of EA{based optimization,using a new RBF network, was proposed.

Figure 8: 3D Peripheral Cas
ade: Ma
h num-ber distribution over the blade surfa
es and thehub.
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Inverse Problems, Design and Optimization Symposium, Rio de Janeiro, Brazil, 2004The method seems promising for use inoptimization problems with expensive �tnessevaluations. The 
on
ept of the new methodis to allow a dire
t and an adjoint 
ow solverto 
ompute obje
tive fun
tion values andgradients at a number of 
andidate solutionswhi
h will then be used to build a dependablesurrogate evaluation model for the evolution-ary sear
h. Compared to 
onventional RBFnetworks, the new network has a number ofadditional tuning parameters. The new modelyields systemati
ally better predi
tions thanthose of the 
onventional model. It, thus,ensures that the optimization algorithm may
onverge to the global optimal solution withina limited number of 
y
les, ea
h of whi
hinvolves the RBF network retraining.For the design of optimal aerodynami
shapes, the adjoint formulation is used to 
om-pute obje
tive fun
tion derivatives. To ex-tend this method in appli
ation areas otherthan those supported by CFD tools, a simi-lar method that is 
apable of 
omputing gra-dients, with reasonable 
omputing 
ost, shouldbe devised.The training set is updated at the end ofea
h 
y
le, prior to building the new RBFmodel. Ea
h time, the training patterns arerede�ned through (a) adding new patterns(the most re
ent \optimal" solution should beamong them; but, other points sele
ted in lessexplored areas should be added) so as to pro-te
t the network from over�tting and the wholealgorithm from being trapped into lo
al sta-tionary points, (b) eliminating some patterns,by employing distan
e{based 
riteria. The re-de�nition of the training set is 
ru
ial and re-sear
h in this area is ongoing.ACKNOWLEDGMENTThe se
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